

AVR309: Software Universal Serial Bus (USB)

Features
• USB (Universal Serial Bus) protocol implemented in firmware
• Supports Low Speed USB (1.5Mbit/s) in accordance with USB2.0
• Implementation runs on very small AVR devices, from 2kBytes and up
• Few external components required

- One resistor for USB low speed detection
- Voltage divider/regulator, with filtering

• Implemented functions:
- Direct I/O pin control
- USB to RS232 converter
- EEPROM scratch register

• User can easily implement own functions as e.g.:
- USB to TWI control
- USB A/D and D/A converter

• Vendor customizable device identification name (visible from PC side)
• Full PC side support with source code and documentation

- MS Windows USB drivers
- DLL library functions
- Demo application in Delphi

• Examples for developers on how to communicate with device through DLL
(Delphi, C++, Visual Basic)

1 Introduction
The Universal Serial Bus (USB) interface has become extremely popular, due to its
simplicity for end user applications (Plug and Play without restart). For developers,
however, USB implementation into end systems has been more complicated
compared to e.g. RS232. In addition there is a need for device drivers as software
support on the PC side. Because of this, RS232 based communication is still very
popular among end systems manufacturers. This interface is well established and
has good operating system support, but recently the physical RS232 port has been
removed from the standard PC interface, giving ground to USB ports.

Implementation of USB into external devices can be done in two ways:

1. By using a microcontroller with hardware implemented USB interface. It is
necessary to know how USB works and write firmware into the microcontroller
accordingly. Additionally, it is necessary to create a driver on the computer side,
unless if the operating system includes standard USB classes. The main
disadvantage is the lack of availability of this kind of microcontrollers and their
high price compared to simple “RS232” microcontrollers.

8-bit
Microcontrollers

Application Note

Rev. 2556B-AVR-02/06

2 AVR309
2556B-AVR-02/06

2. The second option is to use some universal converter between USB and another
interface. This other interface will usually be RS232, 8-bit data bus, or TWI bus. In
this case there is no need for special firmware, it isn’t even necessary to know how
USB works, and no driver writing is required, as the converter vendor will offer one
driver for the whole solution. The disadvantage is the higher price of the complete
system, and the greater dimensions of the complete product.

The solution presented in this document is a USB implementation into a low-cost
microcontroller through emulation of the USB protocol in the microcontroller firmware.
The main challenge for this design was obtaining sufficient speed. The USB bus is
quite fast: LowSpeed - 1.5Mbit/s, FullSpeed - 12Mbit/s, HighSpeed - 480Mbit/s. The
AVR microcontrollers are fully capable of meeting the hard speed requirements of
LowSpeed USB. The solution is however not recommended for higher USB speeds.

2 Theory of Operation
Extensive details regarding physical USB communication can be found at the website
www.usb.org. This documentation is very complex and difficult for beginners. A very
good and simple explanation for beginners can be found in the document “USB in a
Nutshell. Making Sense of the USB Standard” written by Craig Peacock [2].

In this application note the explanation is limited in scope to understanding the device
firmware. The USB physical interface consists of 4 wires: 2 for powering the external
device (VCC and GND), and 2 signal wires (DATA+ and DATA-). The power wires give
approximately 5 volts and max. 500mA. The AVR can be supplied from the Vcc and
GND. The signal wires named DATA+ and DATA- handle the communication
between host (computer) and device. Signals on these wires are bi-directional.
Voltage levels are differential: when DATA+ is at high level, DATA- is at low level, but
there are some cases in which DATA+ and DATA- are at the same level, like EOP
(end of packet).

Therefore, in the firmware driven USB implementation it is necessary to be able to
sense or drive both these signals.

According to the USB standard the signal wires must be driven high between 3.0-
3.6V, while the Vcc supported by the USB host is 4.4 - 5.25V. So if the microcontroller
is powered directly from the USB lines, then the data lines must pass through a level
converter to compensate for the different voltage levels. Another solution is to
regulate the Vcc supported by the host down to 3.3V, and run the microcontroller at
that voltage level.

Figure 1. Low Speed Driver Signal Waveforms

VVSSSS

SSiiggnnaall ppiinnss
ppaassss oouuttppuutt
ssppeecc lleevveellss

wwiitthh mmiinniimmaall
rreefflleeccttiioonnss aanndd

rriinnggiinngg

OOnnee BBiitt
TTiimmee

((11..55MMbb//ss))

DDrriivveerr
SSiiggnnaall PPiinnss

VVSSEE ((mmaaxx))

VVSSEE ((mmiinn))

 AVR309

 3

2556B-AVR-02/06

Figure 2. Packet Transaction Voltage Levels
 VVOOHH ((mmiinn))

VVSSEE ((mmaaxx))
VVSSEE ((mmiinn))

VVOOLL ((mmaaxx))
VVSSSS BBuuss IIddllee

FFiirrsstt BBiitt
ooff PPaacckkeett

SSOOPP

VOH (min)

VSE (max)

VSE (min)

VOL (max)

VSS

Bus Driven
to Idle State

Last Bit
of Packet

Bus Idle

Bus
FloatsEOP

Strobe

Figure 3. Low Speed Device Cable and Resistor Connections

F.S./L.S. USB
Transceiver

Host or
Hub Port

Untwisted, Unshielded

R1

D+

D- D-

D+

R1

Slow Slew Rate
Buffers

L.S. USB
Transceiver

Low Speed Function

3 Meters max.

R1=15kΩ
R2=1.5kΩ

R2

The USB device connection and disconnection is detected based on the impedance
sensed on the USB line. For LowSpeed USB devices a 1.5kΩ pull-up resistor
between DATA- signal and Vcc is necessary. For FullSpeed devices, this resistor is
connected to DATA+.

Based on this pull-up, the host computer will detect that a new device is connected to
the USB line.

After the host detects a new device, it can start communicating with it in accordance
with the physical USB protocol. The USB protocol, unlike UART, is based on
synchronous data transfer. Synchronization of transmitter and receiver is necessary
to carry out the communication. Because of this, the transmitter will transmit a small
header as a sync pattern preceding the actual data. This header is a square wave
(101010), succeeded by two zeros after which the actual data is transmitted.

4 AVR309
2556B-AVR-02/06

Figure 4. Sync Pattern

IIddllee

SSYYNNCC PPAATTTTEERRNN

NNRRZZII DDaattaa
EEnnccooddiinngg

PPIIDD00 PPIIDD11

In order to maintain synchronization, USB demands that this sync pattern is
transmitted every millisecond in the case of full speed devices, or that both signal
lines are pulled to zero every millisecond in the case of low speed devices. In
hardware-implemented USB receivers, this synchronization is ensured by a digital
PLL (phase locked loop). In this implementation, the data sampling time must be
synchronized with the sync pattern, then wait for two zeros, and finally start receiving
data.

Data reception on USB must satisfy the requirement that receiver and transmitter are
in sync at all times. Therefore it is not permitted to send a stream of continuous zeros
or ones on the data lines. The USB protocol ensures synchronization by bit stuffing.
This means that, after 6 continuous ones or zeros on the data lines, one single
change (one bit) is inserted. The signals on the USB lines are NRZI coded. In NRZI
each ‘0’ is represented, by a shift in the current signal level, and each ‘1’ is
represented by a hold of the current level. For the bit stuffing this means that one zero
bit is inserted into the logical data stream after 6 contiguous logical ones.

Figure 5. NRZI Data Encoding
 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0

D a t a

N R Z I

I d l e

I d l e

Figure 6. Bit Stuffing
 DDaattaa EEnnccooddiinngg SSeeqquueennccee::

 BBiitt SSttuuffffeedd DDaattaa

 RRaaww DDaattaa

 NNRRZZII
 EEnnccooddeedd DDaattaa

IIddllee

SSyynncc PPaatttteerrnn

SSyynncc PPaatttteerrnn

SSyynncc PPaatttteerrnn

PPaacckkeett DDaattaa

PPaacckkeett DDaattaa

SSttuuffffeedd BBiitt

SSiixx OOnneess

PPaacckkeett DDaattaa

 AVR309

 5

2556B-AVR-02/06

Figure 7. EOP Width Timing
TPERIOD

Differential
Data Lines

EOP
Width

Data
Crossover

Level

Notification of end of data transfer is made by an end-of-packet (EOP) part. EOP
consists of pulling both physical DATA+ and DATA- to the low voltage level. EOP is
succeeded by a short time of idle state (min 2 periods of data rate). After this, the next
transaction can be performed.

Data between sync pattern and EOP is NRZI coded communication between USB
device and host. The data stream is composed of packets consisting of several fields:
Sync field (sync pattern), PacketID (PID), Address field (ADDR), Endpoint field
(ENDP), Data, and Cyclic redundancy check field (CRC). Usage of these fields in
different types of data transfer is explained well in [2]. USB describes four types of
transfer: Control Transfer, Interrupt Transfer, Isochronous Transfer, and Bulk
Transfer. Each of these transfers is dedicated for different device requirements, and
their explanations can be found in [2].

This implementation is using Control transfer. This transfer mode is dedicated for
device settings, but can also be used for general purpose transfers. Implementation
of Control transfer must exist on every USB device, as this mode is used for
configuration when the device is connected for obtaining information from the device,
setting device address, etc.. A description of the Control transfer and its contents can
be found in [2] and [1]. Each Control transfer consists of several stages: Setup stage,
Data stage and Status stage.

Data is in USB transferred in packets, with several bytes each. The packet size is
determined by each device, but is limited by specification. For LowSpeed devices,
packet size is limited to 8 byte. This 8 byte long packet + start and end field must be
received into the device buffer in one USB transfer. In hardware-based USB
receivers, the various parts of the transfer are automatically decoded, and the device
is notified only when the entire message has been assigned to the particular device.
In a firmware implementation, the USB message must be decoded by firmware after
the entire message has been received into the buffer. This gives us the requirements
and limitations: The device must have a buffer for storing the whole USB message
length, another buffer for USB transmission (prepared data to transmit), and
administration overhead with message decoding and checking. Additionally the
firmware is required to perform fast and precise synchronous speed reception from
physical pins to buffer and transmission from buffer to pins. All these capabilities are
limited by the microcontroller’s speed and program/data memory capacity, so the
firmware must be carefully optimized. In some cases the microcontroller computation
power is very close to the minimum requirements and therefore all firmware is written
in assembly.

6 AVR309
2556B-AVR-02/06

3 Hardware Implementation
A schematic diagram of the microcontroller connection to the USB bus is shown in
Figure 8. This schematic was made for the specific purpose of a USB to RS232
converter. There were also implemented specific functions as direct pin control and
EEPROM read/write.

Figure 8. USB interface with ATtiny2313 as USB to RS232 converter with 32 byte
FIFO + 8-bit I/O control + 128 bytes EEPROM

GND

VCC

R1
1k5

+
C2
10u

XT1
12MHz

1
2
3
4

XC1
USB-

RST1
PD0/RXD2
PD1/TXD3
XTAL4
XTAL5
PD2/INT6
PD3/INT7
PD4/T08
PD5/T19
GND10

VC 20

ICP/PD6 11AN2/PB0 12AN1/PB1 13PB2 14OC1/PB3 15PB4 16MOSI/PB5 17MISO/PB6 18SCK/PB7 19

IC1
ATtiny2313

DATA+
DATA-

GND

VCC

C1
100n

GND

GND

GNDD0
D1

D2

D3
D4
D5
D6
D7

TxD
RxD

RS232 TTL

V+

VCC IN 1

GND

2

OUT3
IC2

LE35
3.5V

C3
100n

GND

GND

The USB data lines, DATA- and DATA+, are connected to pins PB0 and PB1 on the
AVR. This connection cannot be changed because the firmware makes use of an
AVR finesse for fast signal reception: The bit signal captured from the data lines is
right shifted from LSB (PB0) to carry and then to the reception register, which collects
the bits from the data lines. PB1 is used as input signal because on 8-pin ATtiny2313.
This pin can be used as external interrupt INT0. No additional connection to INT0 is
necessary – the 8-pin version of the AVR is the smallest pin count available. On other
AVRs, an external connection from DATA+ to the INT0 pin is necessary to ensure no
firmware changes between different AVR microcontrollers.

For proper USB device connection and signaling, the AVR running as low speed USB
device must have a 1.5kΩ pull-up resistor on DATA-.

The Vcc supplied by the USB host may vary from 4.4V to 5.25V. This supply has to
be regulated to 3.0 – 3.6V before connecting the 1.5kΩ pull-up resistor and sourcing
the AVR. Dimension a voltage regulator depending on the power load of the target
system. The voltage regulator must be a low drop-out regulator. The schematic in
Figure 8 use a LE35 regulator with a nominal output voltage of 3.5V. But one can use
any similar solution as long as the required properties are held. Even a very simple
regulator based on a Zener diode could in some cases be used.

The other components provide functions for proper operation of the microcontroller
only: Crystal as clock source, and capacitors for power supply filtering.

This small component count is sufficient to obtain a functional USB device, which can
communicate with a computer through the USB interface. This is a very simple and

 AVR309

 7

2556B-AVR-02/06

inexpensive solution. Some additional components can be added to extend the
device functions.

A TSOP1738 infrared sensor can be used to receive an IR signal. A MAX232 TTL to
RS232 level converter should be added to make a USB to RS232 converter. To
control LED diodes or display, they can be connect to I/O pins directly or through
resistors.

4 Software Implementation
All USB protocol reception and decoding is performed at the firmware level. The
firmware first receives a stream of USB bits in one USB packet into the internal buffer.
Start of reception is based on the external interrupt INT0, which takes care of the
sync pattern. During reception, only the end of packet signal is checked (EOP
detection only). This is due to the extreme speed of the USB data transfer. After a
successful reception, the firmware will decode the data packets and analyze them.
First it checks if the packet is intended for this device according to its address. The
address is transferred in every USB transaction and therefore the device will know if
the next transferred data are dedicated to it. USB address decoding must be done
very quickly, because the device must answer with an ACK handshake packet to the
USB host if it recognizes a valid USB packet with the given USB address. Therefore,
this is a critical part of the USB answer.

After the reception of this bit stream, we obtain an NRZI coded array of bits with bit
stuffing in the input buffer. In the decoding process we first remove the bit stuffing and
then the NRZI coding. All these changes are made in a second buffer (copy of the
reception buffer). A new packet can be received while the first one is being decoded.
At this point, decoding speed is not so important. This is because the device can
delay the answer itself. If the host asks for an answer during decoding, the device
must answer immediately with NAK so that the host will understand it is not ready yet.
Because of this, the firmware must be able to receive packets from the host during
decoding, decode whether the transaction is intended for the device, and then send a
NAK packet if there is some decoding in progress. The host will then ask again. The
firmware also decodes the main USB transaction and performs the requested action;
for instance, send char to RS232 line and wait for transmission complete, and
prepares the corresponding answer. During this process the device will be interrupted
by some packets from the host, usually IN packets to obtain an answer from the
device. To these IN packets, the device must answer with NAK handshake packets.
When the answer is ready, and the device has performed the required action, the
answer must first go through a CRC field calculation and inclusion, then the NRZI
coding, and then bit stuffing. Now, when the host requests an answer, this bit stream
can be transferred to the data lines according to the USB specification.

4.1 Firmware description
In the following, the main parts of the firmware will be described. The firmware is
divided into blocks: interrupt routines, decoding routines, USB reception, USB
transmission, requested action decoding, and performing requested custom actions.

Users can add their own functions to the firmware. Some examples on how to make
customer-specific functions can be found in the firmware code, and the user can write
new device extensions according to the existing built-in functions. For example TWI
support can be added according to the built-in function for direct pin control.

8 AVR309
2556B-AVR-02/06

Figure 9. Flowchart of the receiver routine

Yes

Sample DATA+,
DATA- to PB0, PB1

Shift PB0 → carry
Shiftbuffer ← carry

Yes PB0=PB1=0 ?

Shift buffer
full?

No

Store Shift buffer to
input buffer

No

1

Received
 bytes < 3 ?

Sampling time to middle of bit
Init reception of USB data bits

Wait for end of SOP
(2 bits at same level)

Edge detection

INT0 rising edge

2

1

Send answer (if answer
prepared in out buffer),
or NACK (if answer in
progress)

Set state according to
received type of packet

Is it my USB
address?

2 No

Is it an IN
packed?

Is it a Setup data
packed?

Yes

Yes

No

No

Yes

Finish INT0 interrupt:
- Clear pending INT0
- Restore registers

2

Send ACK packet
(accepting setup data packet).
Copy reception buffer to input buffer.
Set flag for new request in input buffer.

USB address detection
(if no Data packet)

Packet type detection

End of INT0 interrupt

2

 AVR309

 9

2556B-AVR-02/06

4.2 “EXT_INT0” Interrupt Service Routine
The external interrupt 0 is active all the time while the firmware is running. This
routine initiates the reception of the USB serial data. An external interrupt occurs on a
rising edge on the INT0 pin, a rising edge marks the beginning of the sync pattern of
a USB packet, se Figure 4. This activates the USB reception routine.

First, the data sampling must be synchronized to the middle of the bit width. This is
done according to the sync pattern. Since the bit duration is only 8 cycles of the XTAL
clock, and the interrupt occurrence could be delayed (+/- 4 cycles), the edge
synchronization of the sync pattern must be performed carefully. End of sync pattern
and begin of data bits are detected according to the last dual low level bits in the sync
packet (see Figure 4).

After this, the actual data sampling is started. Sampling is performed in the middle of
the bit. Because data rate is 1.5Mbit/s (1.5MHz) and the microcontroller speed is
12MHz, we have only 8 cycles at our disposal for data bit sampling, storing the result
into the buffer byte, shifting the buffer byte, checking if the whole byte has been
received, storing this byte into SRAM, and checking for EOP. This is perhaps the
most crucial part of the firmware; everything must be done synchronously with exact
timing. When a whole USB packet has been received, packet decoding must be
performed. First, we must quickly determine the packet type (SETUP, IN, OUT,
DATA) and received USB address. This fast decoding must be performed inside the
interrupt service routine because an answer is required very quickly after receiving
the USB packet (the device must answer with an ACK handshake packet when a
packet with the device address has been received, and with NAK when the packet is
for the device, but when no answer is currently ready).

At the end of the reception routine (after ACK/NAK handshake packet has been sent)
the sampled data buffer must be copied into another buffer on which the decoding will
be performed. This is in order to free the reception buffer to receive a new packet.

During reception the packet type is decoded and the corresponding flag value is set.
This flag is tested in the main program loop, and according to its value the
appropriate action will be taken and the corresponding answer will be prepared with
no regard to microcontroller speed requirements.

The INT0 must be allowed to keep its very fast invocation time in all firmware
routines, so no interrupt disabling is allowed and during other interrupts’ execution (for
example serial line receive interrupt) INT0 must be enabled. Fast reception in the
INT0 interrupt routine is very important, and it is necessary to optimize the firmware
for speed and exact timing. One important issue is register backup optimization in
interrupt routines.

4.3 Main program loop
The main program loop is very simple. It is only required to check the action flag:
what to do when some received data are present. In addition it checks whether the
USB interface is reset (both data lines at low level for a long time) and, if it is,
reinitializes the device. When there is something to do (i.e. action flag active), the
corresponding action is called: decoding NRZI in packet, bit stuffing removal, and
preparation of the requested answer in the transmit buffer (with bit stuffing and NRZI
coding). Then one flag is activated to signal that the answer is prepared for sending.

10 AVR309
2556B-AVR-02/06

Physical output buffer transmission to the USB lines is performed in the reception
routine as answer to the IN packet.

4.4 Short description of firmware subroutines
In the following, the firmware subroutines and their purposes are described briefly.

4.4.1 Reset:

Initialization of the AVR microcontroller resources: stack, serial lines, USB buffers,
interrupts.

4.4.2 Main:

The main program loop. Checks the action flag value and, if flag is set, performs the
required action. Additionally, this routine checks for USB reset on data lines and
reinitializes the USB microcontroller interface if this is the case.

4.4.3 Int0Handler:

The interrupt service routine for the INT0 external interrupt. Main
reception/transmission engine; emulation from USB data lines. Storing data to buffer,
decision of USB packet owners (USB address), packet recognition, sending answer
to USB host. Basically the heart of the USB engine.

4.4.4 SetMyNewUSBAddresses:

Routine to change the USB address. The address is changed and is coded to its
NRZI equivalent. This is done because the address decoding during USB packet
reception, must be performed quickly.

4.4.5 FinishReceiving:

Copies coded raw data from USB reception packet to decoding packet (for NRZI and
bit stuffing decoding).

4.4.6 USBreset:

Initializes USB interface to default values (as the state after power on).

4.4.7 SendPreparedUSBAnswer:

Sends prepared output buffer contents to USB lines. NRZI coding and bit stuffing is
performed during transmission. Packet is ended with EOP.

4.4.8 ToggleDATAPID:

Toggles DATAPID packet identifier (PID) between DATA0 and DATA1 PID. This
toggling is necessary during transmission as per the USB specification.

 AVR309

 11

2556B-AVR-02/06

4.4.9 ComposeZeroDATA1PIDAnswer:

Composes zero answer for transmission. Zero answer contains no data and is used
in some cases as answer when no additional data is available on device.

4.4.10 InitACKBufffer:

Initializes buffer in RAM with ACK data (ACK handshake packet). This buffer is
frequently sent as answer so it is always kept ready in memory.

4.4.11 SendACK:

Transmits ACK packet to USB lines.

4.4.12 InitNAKBuffer:

Initializes buffer in RAM with NAK data (NAK handshake packet). This buffer is
frequently sent as answer so it is always kept ready in memory.

4.4.13 SendNAK:

Transmits NAK packet to USB lines.

4.4.14 ComposeSTALL:

Initializes buffer in RAM with STALL data (STALL handshake packet). This buffer is
frequently sent as answer so it is always kept ready in memory.

4.4.15 DecodeNRZI:

Performs NRZI decoding. Data from USB lines in buffer is NRZI coded. This routine
removes the NRZI coding from the data.

4.4.16 BitStuff:

Removes/adds bit stuffing in received USB data. Bit stuffing is added by host
hardware according to the USB specification to ensure synchronization in data
sampling. This routine produces received data without bit stuffing or data to transmit
with bit stuffing.

4.4.17 ShiftInsertBuffer:

Auxiliary routine for use when performing bit stuffing addition. Adds one bit to output
data buffer and thus increases the buffer length. The remainder of the buffer is shifted
out.

4.4.18 ShiftDeleteBuffer:

Auxiliary routine for use when performing bit stuffing removal. Removes one bit to
output data buffer and thus decreases the buffer length. The remainder of the buffer
is shifted in.

4.4.19 MirrorInBufferBytes:

Exchanges bit order in byte because data is received from USB lines to buffer in
reverse order (LSB/MSB).

12 AVR309
2556B-AVR-02/06

4.4.20 CheckCRCIn:

Performs CRC (cyclic redundancy check) on received data packet. CRC is added to
USB packet to detect data corruption.

4.4.21 AddCRCOut:

Adds CRC field into output data packet. CRC is calculated according to the USB
specification from given USB fields.

4.4.22 CheckCRC:

Auxiliary routine used in CRC checking and addition.

4.4.23 LoadDescriptorFromROM:

Loads data from ROM to USB output buffer (as USB answer).

4.4.24 LoadDescriptorFromROMZeroInsert:

Loads data from ROM to USB output buffer (as USB answer) but every even byte is
added as zero. This is used when a string descriptor in UNICODE format is requested
(ROM saving).

4.4.25 LoadDescriptorFromSRAM:

Loads data from RAM to USB output buffer (as USB answer).

4.4.26 LoadDescriptorFromEEPROM:

Loads data from data EEPROM to USB output buffer (as USB answer).

4.4.27 Load[X]Descriptor:

Performs selection for answer source location: ROM, RAM or EEPROM.

4.4.28 PrepareUSBOutAnswer:

Prepares USB answer to output buffer according to request by USB host, and
performs the requested action. Adds bit stuffing to answer.

4.4.29 PrepareUSBAnswer:

Main routine for performing the required action and preparing the corresponding
answer. The routine will first determine which action to perform – discover function
number from received input data packet – and then perform the requested function.
Function parameters are located in the input data packet.

The routine is divided into two parts:

• standard requests
• vendor specific requests
Standard requests are necessary and are described in USB specification
(SET_ADDRESS, GET_DESCRIPTOR, …).

Vendor specific requests are requests that can obtain vendor specific data (in Control
USB transfer). Control IN USB transfer is used for this AVR device to communicate
with host. Developers can add their own functions here and in this manner extend the

 AVR309

 13

2556B-AVR-02/06

device versatility. The various documented built-in functions in the source code can
be used as templates on how to add custom functions.

4.5 Standard USB functions (Standard Requests)
ComposeGET_STATUS;

ComposeCLEAR_FEATURE;

ComposeSET_FEATURE;

ComposeSET_ADDRESS;

ComposeGET_DESCRIPTOR;

ComposeSET_DESCRIPTOR;

ComposeGET_CONFIGURATION;

ComposeSET_CONFIGURATION;

ComposeGET_INTERFACE;

ComposeSET_INTERFACE;

ComposeSYNCH_FRAME;

4.6 Vendor USB functions (Vendor requests)
DoSetInfraBufferEmpty;

DoGetInfraCode;

DoSetDataPortDirection;

DoGetDataPortDirection;

DoSetOutDataPort;

DoGetOutDataPort;

DoGetInDataPort;

DoEEPROMRead;

DoEEPROMWrite;

DoRS232Send;

DoRS232Read;

DoSetRS232Baud;

DoGetRS232Baud;

DoGetRS232Buffer;

DoSetRS232DataBits;

DoGetRS232DataBits;

DoSetRS232Parity;

DoGetRS232Parity;

14 AVR309
2556B-AVR-02/06

DoSetRS232StopBits;

DoGetRS232StopBits;

4.7 Data structures (USB descriptors and strings)
DeviceDescriptor;

ConfigDescriptor;

LangIDStringDescriptor;

VendorStringDescriptor;

DevNameStringDescriptor;

4.8 Format of input message from USB host
As stated above, this USB device uses USB Control Transfer. This type of transfer
uses a data format defined in the USB specification described in [2] on page 13
(Control Transfers). The document describes the details and explains how the control
transfer works, and therefore also how this device communicates with the USB host.
The AVR device is using control IN endpoint. A nice example of data communication
can be found on page 15 of [2]. The communication between the host and the AVR
device is done according to this example.

In addition to the actual control transfer, the format of the DATA0/1 field in the transfer
is discussed. Control transfer defines in its setup stage a standard request, which is 8
bytes long. Its format is described on page 26 of [2] (The Setup Packet). There is a
table with a description of the meaning of every byte. The following is important:

The standard setup packet is used for detection and configuration of the device after
power on. This packet uses the Standard Type request in the bmRequestType field
(bits D6-D5 = 0). All the following fields’ (bRequest, wValue, wIndex, wLength)
meanings can be found in the USB specification. Their explanation can be found on
pages 27-30 in [2] (Standard Requests).

Every setup packet has eight bytes, used as described in Table 1.

 AVR309

 15

2556B-AVR-02/06

Table 1. Standard setup packet fields (control transfer)
Offset Field Size Value Description

0 bmRequestType 1 Bit-map Characteristics of request
 D7 Data xfer direction
 0 = Host to device
 1 = Device to host
 D6..5 Type
 0 = Standard
 1 = Class
 2 = Vendor
 3 = Reserved
 D4..0 Recipient
 0 = Device
 1 = Interface
 2 = Endpoint
 3 = Other
 4..31 = Reserved

1 bRequest 1 Value Specific request

2 wValue 2 Value Word-sized field that varies according to request

4 wIndex 2 Index or Offset Word sized field that varies according to request - typically used to
pass an index or offset

6 wLength 2 Count Number of bytes to transfer if there is a data phase

16 AVR309
2556B-AVR-02/06

Table 2. Standard device requests
BmRequest-
Type

bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

CLEAR_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface, or
Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

 AVR309

 17

2556B-AVR-02/06

Table 3. Vendor device requests used in firmware as functions calls.
BmRequest-
Type

bRequest
(function name)

bRequest
(number)

wValue
(param1)

wIndex
(param2)

wLength Data

110xxxxxB FNCNumberDoSetInfraBufferEmpty 1 None None 1 Status

110xxxxxB FNCNumberDoGetInfraCode 2 None None 1 Status

110xxxxxB FNCNumberDoSetDataPortDirection 3 DDRB
DDRC

DDRD
usedports

1 Status

110xxxxxB FNCNumberDoGetDataPortDirection 4 None None 3 DDRB
DDRC
DDRD

110xxxxxB FNCNumberDoSetOutDataPort 5 PORTB
PORTC

PORTD
usedports

1 Status

110xxxxxB FNCNumberDoGetOutDataPort 6 None None 3 PORTB
PORTC
PORTD

110xxxxxB FNCNumberDoGetInDataPort 7 None None 3 PINB
PINC
PIND

110xxxxxB FNCNumberDoEEPROMRead 8 Address None Length EEPROM
bytes

110xxxxxB FNCNumberDoEEPROMWrite 9 Address EEPROM
value

1 Status

110xxxxxB FNCNumberDoRS232Send 10 RS232 byte
value

None 1 Status

110xxxxxB FNCNumberDoRS232Read 11 None None 2 Status

110xxxxxB FNCNumberDoSetRS232Baud 12 Baudrate Lo Baudrate Hi 1 Status

110xxxxxB FNCNumberDoGetRS232Baud 13 None None 2 Baudrate

110xxxxxB FNCNumberDoGetRS232Buffer 14 None None Length RS232 bytes
from FIFO

110xxxxxB FNCNumberDoSetRS232DataBits 15 Databits value None 1 Status

110xxxxxB FNCNumberDoGetRS232DataBits 16 None None 1 Databits
value

110xxxxxB FNCNumberDoSetRS232Parity 17 Parity value None 1 Status

110xxxxxB FNCNumberDoGetRS232Parity 18 None None 1 Parity value

110xxxxxB FNCNumberDoSetRS232StopBits 19 Stopbits value None 1 Status

110xxxxxB FNCNumberDoGetRS232StopBits 20 None None 1 Stopbits
value

The Control Transfer mode is used for the user communication, implemented as
custom functions in the firmware. The Vendor Type request in the bmRequestType
field (bits D6-D5 = 2) is used. Here all succeeding fields (bRequest, wValue, wIndex)
can be modified according to the programmer’s purposes. In our implementation, the
bRequest field is used for the function number and the next fields are used for
function parameters. The first parameter is in the wValue slot, the second at the
wIndex location.

18 AVR309
2556B-AVR-02/06

An example from the implementation is EEPROM writing. bRequest = 9 is chosen as
function number. The wValue field is used for EEPROM address, and the value to
write (EEPROM data) is in the wIndex field. According to this, we obtain the following
function is obtained: EEPROMWrite(Address, Value).

If more user functions are required, it is enough to add function numbers and the
body of the required function into the firmware. The technique can be extracted from
the built-in functions in the firmware (see source code).

USB host also communicates with device with IN control transfers. Host sends an 8-
byte IN data packet to the device in the format defined above (function number and
parameters), and the device then answers with requested data. The length of the
answered data is firmware limited in some cases up to 255 bytes, but the main
limitation is on the device driver side on the host computer. The current driver
supports 8-byte length answers in Vendor Type requests.

4.9 Firmware customization
Users can add new functions into the firmware and extend the device features.

In the firmware there are 3 examples on how to add user functions: DoUserFunctionX
(X=0,1,2). Look at these examples to see how to add similar extended functions. The
contents of the functions only depend on the device requirements.

The identification and device name presented to the computer side can be modified in
the firmware This name is located in firmware as strings and can be changed to any
string. However these names are recommended to be changed together with the USB
PID (product ID) and VID (vendor ID) for correct recognition in target systems.

VID together with PID must be unique for a given device type. Therefore it is
recommended that if a device functionality is changed, one should also modify the
PID and/or VID. Vendor ID depends on the USB device vendor and must be assigned
from the USB organization (see more information in [1]). Every vendor has its own ID
and therefore this value cannot be changed to any unassigned value. But the product
ID depends only on the vendor’s choice, and the purpose of the PID is to recognize
the different devices from the same vendor.

This application note is setup with VID 0x03EB and PID 0x21FF which is Atmel’s VID.
Do not use this VID in your target system.

4.10 PC software
In order to communicate with the device some software support on the PC side is
needed. This software is divided into 3 levels:

1. Device driver: Used for low-level communication with the device and for installation
into operating system (Windows98/ME/NT/XP).

2. DLL library: Used for encapsulation of device functions and communication with
the device driver. The DLL simplifies the device function access from the user’s
application. It includes some device and operating system related functions
(threads, buffers, etc.).

3. User application: Makes user interface for friendly communication between user
and device. Uses function calls from DLL library only.

 AVR309

 19

2556B-AVR-02/06

4.10.1 Device driver and installation files

The first time the USB device is connected to the computer USB port, the operating
system will detect the device and request driver files. This is called device installation.
For the installation process it is necessary not only to make the device driver, but also
an installation script in which the installation steps are described.

The device driver for the device described in this document is made with
Windows2000 DDK (Driver Development Kit). The development of the USB driver is
based on one of the included examples in the DDK – IsoUsb. This driver has been
modified for AVR USB device communication. In the original source code, parts have
been extended/added around the IOCTL communications, because this device
communicates with the computer through these IOCTL calls. To reduce the driver
code size, unused parts have been removed. The name of the driver is “AVR309.sys”
and it works as sender of commands to the USB device (Control IN transfers). The
driver works on all 32-bit Windows versions except Win95.

An installation script written in an INF file is used during device installation. In this INF
file the various installation steps are described. The file “AVR309.inf” was created
using a text editor. This file is requested by the operating system during installation.
During the installation process, the driver file is copied into the system and the
required system changes are made. The INF file ensures installation of the DLL
library to the system search path for easy reach from various applications.

Three files are necessary for device installation: INF file “AVR309.inf”, driver
“AVR309.sys”, and DLL library “AVR309.dll”.

4.10.2 DLL library

The DLL library communicates with the device driver and all device functions are
implemented in this library. This way the programming of end-user applications is
simplified. The DLL library ensures exclusive access to the device (serializes device
access), contains system buffer for RS232 data reception, and creates a single
system thread for device RS232 data buffer reading.

Serialization in DLL ensures that only one application/thread will communicate with
the device at any given time. This is necessary because of the possibility of mixing
question and answer from various applications at the same time.

A system buffer for RS232 data reception ensures that the data received from the
device’s RS232 line is stored into one buffer that is common to all applications. This
way, data received by the device will be sent to all applications. There is no danger
that an application will receive incomplete data because some other application has
read some of the data before.

Only one system thread exists for all applications, and will periodically request device
for RS232 data. The thread will then store received data into the system buffer. Only
one system buffer solution ensures small CPU usage (in comparison to every
application having their own thread) and simplifies storing data into the system buffer.

All device functions are defined in the DLL library, and they are exported in a user-
friendly form: not as function number and parameters, but as tidy function names with
parameters. Some functions are more complex internally, as the function for RS232
buffer data read. This way, developers of end-user applications can rapidly write
application using only the DLL interface. There is no need to study the low-level

20 AVR309
2556B-AVR-02/06

device functions, as the DLL library separates the application programmer level from
the hardware level.

Declarations are written for the 3 mostly used programming languages: Borland
Delphi, C++ (Borland or Microsoft) and Visual Basic. A detailed description of these
functions can be found in the included help file AVR309_DLL_help.htm.

The DLL is written in Delphi, and all source code is included in this application note.

4.10.3 End user application

The end-user application will use functions from the DLL library to communicate with
the device only. Its main purpose is to make a user-friendly graphical user interface
(GUI).

Application programmers use the DLL library to write their own applications. An
example can be found in the published project where all the source code is available.
Many applications can be written using this example as starting point, and in several
programming languages (Delphi, C++, and Visual Basic).

There is included an example of an end user application called “AVR309demo.exe”.
This software is only meant as an example on how to use the functions from the DLL
library. The included source code is written in Delphi, and can be used as a template
for other applications.

4.10.4 UART speed error discussion

The microcontroller uses a 12MHz clock because of the USB sampling. But using this
clock value has a minor disadvantage in that baud rate generation will contain small
errors for the standard baud rates. However the high value of the clock minimizes this
error. Absolute maximum error that could be accepted in baud rate generation is 4%:
because maximum error is half a bit duration (0.5) and the maximum packet time is
12bits = 1start bit + 8data bits + 1parity bit + 2stop bits. Then the error is:
0.5/12*100% = 4.1%.

The functions in the DLL automatically check this error and set the baud rate of the
microcontroller only if the error is below 4%, it also returns an error message in case
of an unsupported baud rate. It is however recommended to never use an error larger
than 2%.

Table 4 summarizes the errors of the standard baud rates when using a 12MHz clock.

Table 4. AVR UART baud rate errors (12MHz clock)
Standard baudrates Baudrate in AVR Error [%]

600 602 +0.33

1200 1204 +0.33

2400 2408 +0.33

4800 4808 +0.17

9600 9616 +0.17

19200 19230 +0.16

28800 28846 +0.16

38400 38462 +0.16

57600 57692 +0.16

115200 115384 +0.16

 AVR309

 21

2556B-AVR-02/06

5 Used documentation and resources

5.1 USB related resources:
[1] http://www.usb.org - USB specification and another USB related resources
[2] usb-in-a-nutshell.pdf from http://www.beyondlogic.org/usbnutshell/usb-in-a-

nutshell.pdf - very good and simple document how USB works
[3] http://www.beyondlogic.org - USB related resources
[4] enumeration.pdf - exact pictures how USB enumeration works
[5] http://mes.loyola.edu/faculty/phs/usb1.html
[6] http://www.mcu.cz - USB section (in Czech/Slovak language)
[7] crcdes.pdf – implementation CRC in USB
[8] USBspec1-1.pdf – USB 1.1 specification
[9] usb_20.pdf – USB 2.0 specification

5.2 AVR related resources:

[10] http://www.atmel.com/AVR - AVR 8-bit microcontrollers family
[11] doc2543.pdf – ATtiny2313 datasheet

http://www.atmel.com/dyn/products/product_card.asp?part_id=3229
[12] doc2545.pdf – ATmega48/88/168 datasheet

http://www.atmel.com/dyn/products/product_card.asp?part_id=3301
[13] avr910.pdf – AVR ISP programming
[14] http://www.avrfreaks.com - a lot of AVR resources and information
[15] AVR Studio 4 – debugging tool for the AVR family (from http://www.atmel.com)
[16] Simple LPT ISP programmer.

(http://www.hw.cz/products/lpt_isp_prog/index.html)

5.3 Driver related resources:

[17] http://www.beyondlogic.org - USB related resources about USB drivers
[18] http://www.cypress.com - fully documented USB driver (for USB thermometer)
[19] http://www.jungo.com - WinDriver and KernetDriver – easy to use USB drivers
[20] http://microsoft.com Microsoft Windows DDK – Driver Development Kit – tools

for drivers writing

22 AVR309
2556B-AVR-02/06

6 Appendix
The appendixes are included in a separate attachment file to this application note.

6.1 AVR firmware with source code
Firmware source code for the ATtiny2313 AVR microcontroller was written in AVR
Studio 4. Source code can be found in the text file USBtiny2313.asm.

6.2 DLL library with source code
Library AVR309.dll was written in Delphi3, so its source code is based on Object
Pascal language. Interfaces (Delphi, C/C++ and Visual Basic.) to the DLL library
(exported functions) “AVR309.dll” are described in file AVR309_DLL_help.htm. Whole
source code of AVR309.dll library written in Delphi3 can be found in file AVR309.dpr
(Delphi3 project).

6.3 End user application example, with source code
The example using the DLL library as an end user application is
AVR309USBdemo.exe. The source code is a Delphi3 application:
AVR309USBdemo.dpr.

7 About the Author
Ing. Igor Cesko
Slovakia
www.cesko.host.sk
cesko@internet.sk

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are
the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

2556B-AVR-02/06

	Introduction
	Theory of Operation
	Hardware Implementation
	Software Implementation
	Firmware description
	“EXT_INT0” Interrupt Service Routine
	Main program loop
	Short description of firmware subroutines
	Reset:
	Main:
	Int0Handler:
	SetMyNewUSBAddresses:
	FinishReceiving:
	USBreset:
	SendPreparedUSBAnswer:
	ToggleDATAPID:
	ComposeZeroDATA1PIDAnswer:
	InitACKBufffer:
	SendACK:
	InitNAKBuffer:
	SendNAK:
	ComposeSTALL:
	DecodeNRZI:
	BitStuff:
	ShiftInsertBuffer:
	ShiftDeleteBuffer:
	MirrorInBufferBytes:
	CheckCRCIn:
	AddCRCOut:
	CheckCRC:
	LoadDescriptorFromROM:
	LoadDescriptorFromROMZeroInsert:
	LoadDescriptorFromSRAM:
	LoadDescriptorFromEEPROM:
	Load[X]Descriptor:
	PrepareUSBOutAnswer:
	PrepareUSBAnswer:

	Standard USB functions (Standard Requests)
	Vendor USB functions (Vendor requests)
	Data structures (USB descriptors and strings)
	Format of input message from USB host
	Firmware customization
	PC software
	Device driver and installation files
	DLL library
	End user application
	UART speed error discussion

	Used documentation and resources
	USB related resources:
	AVR related resources:
	Driver related resources:

	Appendix
	AVR firmware with source code
	DLL library with source code
	End user application example, with source code

	About the Author

